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Abstract The classical theory of the crystallography of

martensitic transformations developed in the 1950s is based

on the notion that the interface between the parent and

product phases is an invariant plane of the shape deforma-

tion. Underlying this hypothesis is the expectation that such

interfaces do not exhibit long-range strain, and the geometric

theory is an algorithm for finding invariant planes, the ori-

entation relationship and transformation displacement. In the

context of ferrous alloys, the classical theory has been

applied successfully to transformations with {295} habit

planes, but is less satisfactory for {575} for example. A new

model of martensitic transformations has been presented

recently based on dislocation theory, incorporating devel-

opments in the understanding of the topological properties of

interfacial defects. Topological arguments show that glissile

motion of transformation dislocations, or disconnections,

can only occur in coherent interphase interfaces. Hence, the

interface in the model comprises coherent terraces with a

superimposed network of disconnections and crystal dislo-

cations. It is demonstrated explicitly that this defect network

accommodates the coherency strains, and that lateral motion

of the disconnections across the interface effects transfor-

mation in a diffusionless manner. Moreover, it is shown that

a broader range of habit planes is predicted on the basis of the

semi-coherent interface model than the invariant plane

notion. In the case of ferrous alloys, it will be shown that a

range of viable solutions arise which include {575}.

Introduction

Martensitic transformations are diffusionless and displacive

[1]. They occur with isothermal, athermal or burst kinetics;

in most cases, nucleation is thought to be thermally activated,

and growth is not a rate-limiting process except for slow

isothermal instances [2]. The structure of the parent–mar-

tensite interface is a key issue in all these considerations, and

the object of the present article is to review recent progress in

the development of a model of the interface based on dislo-

cation theory. In the phenomenological model, developed by

Wechsler et al. [3] and Bowles and MacKenzie [4], the

interface is envisaged as an invariant plane of the shape

transformation. This notion is consistent with a large number

of experimental observations at the resolution of the optical

microscope, although certain martensitic morphologies, in

Fe alloys for example, are exceptions [5]. A dislocation

model can elucidate the structure of interfaces at the atomic

level and could therefore resolve the inapplicability of the

classical model to certain transformations. Furthermore,

dislocation modelling should relate directly to kinetic issues.

In the following sections, the dislocation model, referred to

as the topological model (TM) [6, 7], is outlined and com-

pared with the phenomenological model of martensite

crystallography (PTMC). The TM is then applied to the cases

of the b to a transformation in Ti and c to a in Fe-based alloys.

Topological model of martensitic interfaces

The ideal parent–martensite interface is required to be

glissile, i.e. to migrate readily without long-range diffu-

sion, and in a manner that produces the transformation

shear. In addition, unit cells of the two phases should only

be distorted in the vicinity of the interface. The former
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property can arise through the motion across an interface of

transformation dislocations, or disconnections [8], i.e. line

defects with both dislocation and step character. The latter

property is characteristic of semicoherent interface struc-

tures [9]; in general, at least two sets of dislocations are

needed to accommodate coherency strains. Thus in the

simplest case, the TM envisages one array of disconnec-

tions and one of crystal defects, slip or twinning, as

depicted schematically in Fig. 1, which is similar to

structures proposed in earlier works [10–13]. More gener-

ally, there can be more than one set of defects in the latter

array. Synchronous motion of the disconnection array

across the interface can, in special crystallographic cir-

cumstances, produce a martensitic transformation. We now

enumerate these special circumstances.

Glissile motion of disconnections only arises in partic-

ular interphase interfaces; the number of atoms must be

conserved during motion, but not necessarily the volume

occupied since the densities of the two phases are different

in general [14]. Certain disconnections with appropriate

Burgers vector and step height couples, (b, h), can move

conservatively across coherent interfaces, enabling a

‘‘military’’ transfer of material from one crystal to the

other, particularly where atomic shuffling is minimal [15].

Thus, the starting point of the TM is to identify candidate

terraces where low-index planes of the two phases abut

with modest coherency strain. The (b, h) of disconnections

that are glissile in this coherently strained reference state

can be identified using the topological theory of interfacial

defects [16]. It is also necessary to select the second set of

defects so that intersection nodes with the disconnections

are not sessile. Slip or twinning defects (b, 0) from the

martensite fulfil this role, provided they are able to glide to

the interface [17]; such defects produce ‘‘lattice invariant

deformation’’ (LID) in the nomenclature of the PTMC.

The coherency distortion can be removed by superim-

posing an array of defects on the terraces, as in Fig. 1.

Thus, the terraces remain coherent between the defects, and

the distortion diminishes with distance from the interface,

although a small rigid relative rotation of the phases may

arise as a corollary as discussed further below. The orien-

tation and spacing of the disconnections, nD and kD, and

LID, nL and kL, can be found using the Frank-Bilby for-

malism [18]. In general, an iterative procedure is needed to

obtain the equilibrium interface structure [19]; its orienta-

tion, the habit plane, is determined principally by nD and

kD, as in Fig. 1. In seeking an initial solution, nD and nL are

allowed to have any orientation in the interface. This is not

a restrictive condition for the disconnections since they are

glissile. In general, the LID is expected to be oriented along

the intersection of the glide/twinning plane with the habit

plane, nI: If nI and nL differ by a small amount, the strain

matrix with the latter orientation imposed can be calculated

to estimate the residual strain energy. Of course glide

dislocations with b parallel to the terrace plane can reorient

by interface glide. Also, closely spaced or intersecting

sessile LID dislocations can interact and move short dis-

tances by athermal climb. The relative orientation of the

adjacent crystals and the transformation displacement can

also be obtained [7].

Comparison of the phenomenological and topological

models

The centrepiece of the PTMC is that the habit plane is an

‘‘undistorted and unrotated’’ plane of the shape deforma-

tion [20]. Although LID is invoked, it is modelled as a

homogeneous deformation of the martensite, and the latter

crystal is rigidly rotated to fit onto the fixed parent at the

contact plane. By contrast, the TM envisions a coherent

interface, reticulated by a network comprising an array of

glissile disconnections and a second array of LID. For an

ideal habit plane, the coherency distortions are removed at

long range, although a rotation of each crystal way from

the reference orientation may arise. However, in the

immediate vicinity of the interface, the coherent reference

configuration persists, and the defects accommodating the

strains have topological parameters defined in that refer-

ence state. This near-distortion field predicted by the TM is

important since it not only relates to the interfacial energy,

but also to the mechanism of transformation and hence

kinetics. The far-distortion field (rotation) predicted by the

TM also leads to important differences from the PTMC;

first, a small but systematic difference in predicted habit

Fig. 1 Schematic illustration of a parent–martensite interface show-

ing the terrace segments and defect arrays. Coherently strained

terraces are reticulated by arrays of disconnections (b, h) with spacing

kD and crystal slip or twinning dislocations (b, 0) in the (lower)

martensite crystal. The terrace and habit (primed) coordinate frames

are shown and the line directions of the disconnections, nD; and

dislocations, nL; are parallel to x and close to y, respectively
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plane arises, even when other crystallographic parameters

are essentially identical, illustrated below by the b to a
transformation in Ti. The second is that the TM predicts

habit planes that are not invariant planes, and the {575}

case of ferrous alloys is chosen as an example.

The b to a transformation in Ti

A feasible terrace structure for Ti is shown in Fig. 2; the

strains necessary to bring the 1�100ð Þa and 2�1�1ð Þb terraces

into coherence, exx and eyy, are indicated; to first order, the

principal coherency strains are exx = 2exx and eyy = 2eyy;

we note that the signs of exx and eyy are negative here

corresponding to compression of a with respect to b. For-

mally, the coherency strain in the terrace with respect to the

natural crystals, nEc; is defined by

nEc ¼
exx 0 0

0 eyy 0

0 0 0

0
@

1
A: ð1Þ

The total dislocation content needed to accommodate this

strain, B, is given by the Frank-Bilby equation,

B ¼ �nEcv; ð2Þ

where v is a probe vector in the interface. Eligible

disconnections (b, h) and LID, (b, 0) can be determined

from the dichromatic pattern [16]; a candidate

disconnection is shown in Fig. 3, and the LID is known

to be 1�101ð Þa twinning which intersects the terrace plane

along y [21]. Since the disconnections have step

character, v cannot be defined precisely at this stage;

initially, the step character is suppressed, so a provisional

defect network is identified in the terrace plane. The

normal components, bz, of the Burgers vectors of the

disconnections and dislocations are also suppressed; these

components contribute additional small rigid-body

rotations, uD and uL about nD and nL; respectively,

which can be superimposed separately. Using the current

values of nD and kD, one identifies an updated habit plane

(primed coordinates in Fig. 1), and so on iteratively

towards the equilibrium configuration. For simplicity in

the present context, we ignore the small strain exx, so that

a simple disconnection network with b as in Fig. 3 and nD

parallel to x accommodates the misfit, Fig. 4. It has

been shown elsewhere [6] that the equilibrium habit

plane is inclined to the terrace plane by the angle h,

obtained from

�eyy ¼ by tan hþ bz tan2h
� �

h�1; ð3Þ

and uD is equal to

uD¼2sin�1 bz cosh�by sinh�eyyhcosh
� �

sinh=2h
� �

: ð4Þ

For Ti, h = 10.86�, as depicted schematically in Fig. 5,

which is close to the PTMC solution, x = 11.36�,

depicted in Fig. 6. In this case uD is 0.528� for both the

TM, expression (4), and the PTMC (see Fig. 6). Note that

this value of uD is virtually equal to the apparent dis-

crepancy x - h. This arises because the PTMC rotation is

assumed to occur entirely in the martensite, Fig. 6. How-

ever, dislocation theory [22, 23] shows that the rotation uD,

due to the normal components bz’ in Fig. 5, is partitioned

between the two crystals, equally for an interface between

isotropic materials of the same stiffness. As illustrated in

Fig. 7, the TM model predicts that the apparent habit plane

Fig. 2 Scale drawing of the terrace plane in Ti. Full lines represent

the martensite and dashed lines the parent crystal, and bold lines

depict the coherent state after equal and opposite straining, exx and

eyy, of each phase

Fig. 3 Schematic illustration of the formation of a disconnection; the

b of the defect with respect to the coherent reference state is the

Volterra operation required to create equivalent interfaces on either

side of the crystals’ surface steps. The ‘overlap’ step height of the

defect is the smaller of the two surface steps, h(a) in this case. The

sense vector n points out of the page
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inclination for an observer in the parent remote from the

interface, unable to resolve the near-field distortion (or an

experimentalist using optical microscopy and X-ray dif-

fraction), is h + uD/2, and, conversely, for an observer in

the martensite, h - uD/2.

For a complete treatment, the accommodation of exx

must also be taken into account. The interested reader

should see reference [7] where it is shown that twinning

dislocations with nL close to y, b parallel to 1�102½ �a and

kL = 7.16 nm accommodate this strain, and introduce

a rigid-body rotation uL equal to 0.263�. (For simplicity

in analysis, the twinning dislocations are assumed to

form an array of individual defects rather than coalescing

into twins; the results for the two cases are the same

except for some differences between the near-field

distortions.)

The foregoing shows that the TM and PTMC solutions

are very similar in the Ti case. In other words, the invariant

Fig. 4 Schematic illustration

showing the disconnection

content of a parent–martensite

interface, with Burgers vector

components resolved in the

terrace (upper) and habit plane

(lower) frames. The terrace

plane is inclined at an angle h to

the horizontal habit plane.

Coherency strain is represented

by an equivalent defect content,

bc

Fig. 6 Schematic illustration of parent and product lattices viewed

along x for Ti assuming coherency normal to the page according to

the PTMC

Fig. 5 Schematic illustration of the terrace/disconnection structure of

the habit planes in Ti. The Burgers vector components of the

disconnections, their step heights and the coherency strains are shown

Fig. 7 Schematic illustration of the rotation uD (a) unpartitioned

(PTMC), and (b) equally partitioned (TM); dislocation symbols

represent the resultant Burgers vector content normal to the habit

plane, b0z; producing uD. The apparent inclination of the habit plane

for observers in the parent and martensite, respectively, are (a) x and

x - uD, and (b) h + uD/2 and h - uD/2
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plane concept of the PTMC is approximately valid mac-

roscopically, and the TM provides additional details of the

near-field distortion and slight modification of the apparent

habit plane.

The c to a transformation in ferrous alloys

A feasible terrace in this system is (111)c/(011)a; the

principal strains of the natural crystals in the Nishyama-

Wassermann (NW) orientation relationship to the coherent

state are large, as illustrated in Fig. 8. Moreover, there is a

multiplicity of plausible glissile disconnections and

1/2 \ 111 [ LID dislocations, as summarised in Table 1.

Note that the Burgers vector of the disconnection desig-

nated bþ1=þ1 (i.e. with h = +1 in units of terrace plane

spacing) is parallel to eyy, similarly to the case for Ti above.

However, the Table shows that the bx and by components of

b�1=�1 disconnections, illustrated in Fig. 9, are both finite.

Therefore, we explore semi-coherent interfaces based on

b-1/-1 disconnections and bðiÞ LID dislocations (derived

from 1
2

1�11½ �aÞ:
Consider the first stage of solving the Frank-Bilby

equation, i.e. with normal components of b and steps

suppressed. Let nD and nL subtend the angles vD and vL

from the positive x-axis. Now choose a probe vector vD

parallel or (anti-parallel) to nD; such that it intersects only

LID, and, similarly, vL parallel or (anti-parallel) to nL

intersecting only disconnections. Thus, in the former

case, the Burgers vector cut per unit length, BL; can be

written as

BL ¼
bLsinðvD � vLÞ

kL

; ð5aÞ

and, similarly,

BD ¼
bDsinðvD � vLÞ

kD

: ð5bÞ

Equation (2) can now be expressed as

vD ¼ nD ¼ �nEcð Þ�1BL; ð6Þ

and similarly for vL: Thus, the directions of vD and vL can

be determined, hence giving the unit vectors nD and nL

(from which vD and vL are found) and the separations kD

and kL. The resulting network is shown in Fig. 10(a); the

disconnections are close to screw orientation, as depicted in

Fig. 9, and the LID is also very close to screw orientation.

Mechanistically, these LID dislocations are supposed to

glide into the interface as pure screw dislocations, so some

interface glide rearrangement is needed for them to assume

mixed orientation. Such near-screw configurations

accommodating misfit were discussed by Matthews [24]

who pointed out that additional twist misorientation has the

effect of decreasing the spacing, k, of one array and

increasing the other and modifying n for both. Equation (6)

is then modified, for small twists, and becomes

Table 1 Topological parameters of interfacial defects

bx (nm) by (nm) bz (nm) ha t(c) t(a)

bðiÞ 0.135 -0.211 0 0 – 1
2
½1�11�a

bðiiÞ -0.135 -0.211 0 0 – 1
2
½�1�11�a

b�1=�1 -0.135 -0.141 -0.004 -1 1
2
½�1�10�c 1

2
½1�1�1�a

b�2=�2 -0.135 -0.070 -0.008 -2 1
2
½�2�1�1�c ½0�1�1�a

bþ1=þ1 0 0.070 0.004 +1 1
2
½011�c 1

2
½�111�a

a The ‘‘overlap’’ step height, h, is defined as the smaller of the terrace

plane spacings, i.e. (011)a in the present case

Fig. 9 Schematic illustration of a b�1=�1 disconnection in the

coherent reference interface viewed along ½�101�c=½�1�11�a: Lateral

motion of such defects would cause transformation in a conservative

manner. The symbols represent site levels along [111]c /[011]a; note

the large screw component when the defect is oriented along the

viewing direction

Fig. 8 Scale drawing of the atomic rhombi in the terrace plane of a

ferrous alloy. Full lines represent the unstrained martensite, dashed

lines the unstrained parent crystal and bold lines the coherent state
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vD ¼ nD ¼ �nEc þ Rð Þ�1BL; ð7Þ

where R ¼ Rþ þ R�:Rþ represents a rotation of c by

+s/2, and R� is a rotation of a by -s/2 about the terrace

normal, implying that this additional twist, like the tilts u,

is partitioned between the crystals. The network parame-

ters, nD; nL; vD and vL for incremental twist deviation, s,

from the NW to the Kurdjumov-Sachs (KS) orientation,

where ½�101�c is parallel to ½�1�11�a [25], i.e. s = 0� to 5.26�,

are listed in Table 2, and a schematic illustration of the

network for s = 2.5� is shown in Fig. 10(b).

The next stage of iterations for the solutions described

above is to introduce the step character of the disconnec-

tions and hence define the provisional habit plane. The

normal to this plane is determined by rotating the normal to

the terrace plane by the angle w ¼ tan�1 h
kD

about an axis

parallel to nD and the values so obtained are included in

Table 2. The habit plane for the configuration depicted in

Fig. 10(b), expressed in the parent crystal frame, is (0.505

0.700 0.505)c. Further refinement would require the bz

components of the disconnections to be reinstated and the

defect content on the habit plane re-determined using probe

vectors in that plane. At equilibrium, the misfit along this

plane must be accommodated by the defect network, and

further adjustments of defect line directions and separa-

tions may be needed. Defect content with resultant

component of B perpendicular to the final habit plane does

not affect misfit-relief; it acts as a low-angle tilt boundary

thereby introducing an ancillary change in u.

The TM applied to this case gives a range of possible habit

plane solutions, in contradistinction to the invariant plane

notion. The key structural difference between this Fe and the

Ti case is that here the components of b�1=�1 and bðiÞ parallel

to the terrace plane are not aligned with the principal strains.

Consequently, a network of near screw defects accommo-

dates the misfit, and additional twist can be superimposed.

The interfacial energy will vary with increasing twist and

may be minimal for some finite value. A further consider-

ation is the deviation between nL and nI for a particular

solution; additional strain energy will arise if the LID cannot

reorient in the habit plane ðnL ¼ nIÞ: On the other hand,

significant deviation of nL from nI would cause the LID to

become sessile with respect to motion normal to the terrace

plane, possibly retarding disconnection motion.

Although the habit plane structures reported here are

not fully refined, the provisional structures show good

agreement with experimental observations in the literature.

For example, Sandvik and Wayman [26] and Kelly et al.

[27] studied lath martensite in an FeNiMn alloy using

transmission electron microscopy (TEM). They observed

an array of 1
2
½1�11�a LID dislocations with kL in the range

2.6–6.3 nm, nL varying between 10� and 15� from screw

orientation in a habit plane with w = 9.45�, and s
ranging between 0.16� and 3.16�. This observation

resembles closely the array of bðiÞ and b�1=�1 defects

predicted here (Table 2 and Fig. 10(b)) for s = 2.5�,

namely: kL = 3.77 nm, nL oriented 12.99� from screw

orientation and habit plane very close to (575). Reinstating

the small components of bz for the bðiÞ and b�1=�1 defects

produces additional tilts, uL and uD, about nL and nD;

respectively, where uL = * - 0.54� and uD = *0.14�
in this case; these contributions slightly modify the

Table 2 Network parameters for bðiÞ LID and b�1=�1 disconnections.

s (�) vL (�) kL (nm) vD (�) kD (nm) w (�)

0 120.57 2.319 -111.50 1.670 6.93

0.5 119.18 2.520 -113.93 1.571 7.36

1.0 117.53 2.757 -116.08 1.481 7.80

1.5 115.53 3.039 -118.00 1.399 8.26

2.0 113.08 3.381 -119.71 1.324 8.72

2.5 110.02 3.801 -121.25 1.256 9.18

3.0 106.10 4.320 -122.64 1.193 9.65

3.5 100.98 4.969 -123.89 1.137 10.12

4.0 94.13 5.775 -125.03 1.084 10.60

4.5 84.82 6.736 -126.07 1.037 11.08

5.0 72.30 7.745 -127.03 0.992 11.56

5.26 64.27 8.200 -127.50 0.971 11.81

Fig. 10 Schematic illustration of defect networks with bðiÞ LID and

b�1=�1 disconnections for (a) s = 0� and (b) s = 2.5�

3886 J Mater Sci (2008) 43:3881–3888
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relative orientation , misaligning the (111)c and (011)a
planes for example.

Discussion

The TM has been used here to find the interfacial structure

of habit planes between parent and martensite phases; so

called ‘‘single interface’’ habit planes are considered, i.e.

where normal strains are able to relax. The predicted

interfaces are glissile and exhibit no long-range distortion

field except for ancillary tilt and twist rotations away from

the reference orientation relationship. Near-field distortions

accommodate the coherent terraces to the adjacent

unstrained crystals. Coherency is essential for the trans-

formation mechanism to occur in a military manner

without long-range diffusion.

The energy per unit length of an array of dislocations,
W
L ; has the form

W

L
¼ A

k
b2

s ln
k
Cs
þ b2

e

1� mð Þ ln
k

Ce

� �
; ð8Þ

where the subscripts s and e stand for screw and edge,

respectively, C is the core parameter and t is Poisson’s

ratio. According to simulations as well as the Peierls model

[22] the core energy is larger for screws, i.e. Cs \ Ce so,

for large k, Eq. (8) indicates that screw arrays have a

smaller line tension than the edges. However, for small k
the core parameter can dominate and the edges can have

smaller line tension than screws. Since e / b
k ; expression

(8) also shows that W
L / b; implying that defects with

smaller Burgers vectors accommodate coherency strain

more efficiently.

The overall energy comprises the dislocation energies of

the disconnection and LID arrays, their interaction energy,

a contribution from the disconnections’ step risers and the

interfacial free energy of the terrace segments. Both the

disconnections and the LID dislocations have some

spreading width, so the coherent area decreases as k
decreases. In the limit k?b, the interface becomes inco-

herent with higher energy.

In the case of Ti, the predicted interface crystallography

is very similar to the solution obtained using the PTMC,

apart from a small difference of habit due to partitioning of

ancillary tilts. In this case the major part of the interfacial

coherency strain is relieved by the disconnections and the

strain (3.8%) is small enough that elastic energy should

dominate in Eq. (8). Thus, the LID defects have a minor

contribution to the energy of the interface. Hence one

expects an array of edge disconnections with the minimum

possible b = be that still permits the terraces to be

coherent, so that they have relatively low interfacial

energy. More deformation systems could be added, pro-

vided that the net B is the same, but that would decrease the

coherent area and hence increase the energy. Experiment

agrees with this expectation of disconnections in edge

orientation, although the step height is twice that of a single

disconnection [28]. We speculate that this increases the

area of coherent terrace, offsetting the attendant increase in

elastic energy.

The ferrous case is more complex because the coherency

strains are larger. An orthogonal array analogous to the Ti

case is possible. An array of bþ1=þ1 disconnections could

efficiently accommodate eyy and introduce only a small tilt

/D (see Table 1 for components of bþ1=þ1Þ: However, there

is no suitable single mode of LID to accommodate exx. One

possible solution would be to activate two slip systems,

producing an array of alternating bðiÞ and�bðiiÞ dislocations

parallel to y. The by components are effectively cancelled,

but, since these are relatively large (Table 1), there is a

significant increase in the array’s energy. On the other hand,

the network shown in Fig. 10(a), bðiÞ and b�1=�1 defects

with s = 0�, is thought to be favourable, although the

total energy has not been estimated. The network with s =

2.5� corresponding to a {575} habit shown in Fig. 10(b)

may have still lower energy. As described above, experi-

mental observations of this interface are in good agreement

with the predicted network. Thus, in the case of Fe alloys

we have demonstrated that significant differences can arise

between the TM and PTMC; in particular, the instance of

{575} habits, which cannot be explained satisfactorily using

a single mode of LID in the PTMC framework [5], is

addressed. According to the TM, this habit is not an

invariant plane of the shape transformation, which

explains why the PTMC is not applicable in this case.

The predicted defect network comprises near-screw

disconnections and dislocations, in contrast to arrays of

edge defects which are more familiar agents of misfit

accommodation.

It is beyond the scope of this article, but there is another

factor that can be important for plates with small aspect

ratios, i.e. relatively small k values. In such plates rotations

accompanying both disconnection and LID motion produce

incompatibilities at plate edges, with accompanying elastic

or plastic strain. This factor may favour the activation of

multiple LID systems to minimise rotation for both dis-

connections and LID. The von Mises criterion applies, so

no more than five independent systems among disconnec-

tions and LID are required in the most general case. There

is evidence from nano-rolled Nb–Cu layered structures that

the four glide, symmetric slip, no rotation KS mechanism

can operate up to very large strains, so it is also feasible as

a LID type for the much lower (*10% vs. *300%) strains

in the martensite case [29].

J Mater Sci (2008) 43:3881–3888 3887

123



References

1. Christian JW (2002) The theory of transformations in metals and

alloys. Pergamon Press, Oxford

2. Olson GB, Owen WS (eds) (1992) Martensite. ASM Interna-

tional, USA

3. Wechsler MS, Lieberman DS, Read TA (1953) Trans AIME

197:1503

4. Bowles JS, MacKenzie JK (1954) Acta Metall 2:129, 138, 224

5. McDougall PG, Wayman CM (1992) In: Olson GB, Owen WS

(eds) Martensite. ASM International, USA, p 59

6. Pond RC, Celotto S, Hirth JP (2003) Acta Mater 51:5385

7. Pond RC, Hirth JP, Ma X, Chai YW (2007) Topological mod-

elling of martensitic transformations. In: Nabarro FRN, Hirth JP

(eds) Dislocations in solids, vol. 13. Elsevier, Amsterdam, p 227

8. Hirth JP (1994) J Phys Chem Sol 55:985

9. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials.

Clarendon Press, Oxford

10. Hall MG, Aaronson HI, Kinsman KR (1972) Surf Sci. 31:257

11. Roitburd AL (1976) Solid State Phys 33:317

12. Dahmen U (1987) Scripta Metall 21:1029

13. Smith DA (1987) Scripta Metall 21:1009

14. Pond RC, Ma X (2005) Z fur Metal 96:1124

15. Crocker AG (1962) Philos Mag 7:1901

16. Pond RC (1989) Line defects in interfaces. In: Nabarro FRN (ed)

Dislocations in solids, vol. 8. North-Holland, Amsterdam, p 1

17. Christian JW (1994) Metall Mater Trans 25A:1821

18. Bilby BA, Bullough R, Smith E (1955) Proc Roy Soc 231A:263

19. Ma X, Pond RC (2007) J Nucl Mater 361:313

20. Wayman CM (1964) Introduction to the crystallography of

martensite transformations. Macmillan, New York

21. Hammond C, Kelly PM (1969) Acta Metall 17:869

22. Hirth JP, Lothe J (1982) Theory of dislocations. McGraw-Hill,

New York

23. Hirth JP, Pond RC, Lothe J (2006) Acta Mater 54:4237–4245

24. Matthews JW (1974) Phil Mag 29:797

25. Kurdjumov GV, Sachs G (1930) Z Phys 64:325

26. Sandvik BPJ, Wayman CM (1983) Metall Trans 14A:835

27. Kelly PM, Jostsons A, Blake RG (1990) Acta Metal Mater

38:1075

28. Pond RC, Celotto S (2003) Int Mater Rev 48:225

29. Misra A, Hirth JP, Hoagland RG, Embury JD, Kung H (2004)

Acta Mater 52:2387

3888 J Mater Sci (2008) 43:3881–3888

123


	Geometrical and physical models of martensitic transformations in ferrous alloys
	Abstract
	Introduction
	Topological model of martensitic interfaces
	Comparison of the phenomenological and topological models
	The &bgr; to &agr; transformation in Ti
	The &ggr; to &agr; transformation in ferrous alloys
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


